'Working together to achieve success'

	Concrete	Pictorial	Abstract
Reception Addition			
Counting all method	Children will begin to develop their ability to add by using practical equipment to count out the correct amount for each number in the calculation and then combine them to find the total. For example, when calculating $4+2$, they are encouraged to count out four counters and count out two counters. To find how many altogether, touch and drag them into a line one at a time whilst counting.	Children will learn that when we ask how many are there altogether they need to count continuously from one part to the next part, counting all the objects/pictures	Being able to respond to questions like: How many would 3 and 2 be altogether? What are the number pairs for 5? (without concrete or Pictor ial aids)
Counting on method	To support children in moving from a counting all strategy to one involving counting on, children should still have two groups of objects but one should be covered so that it cannot be counted. For example, when calculating $4+2$, count out the two groups of counters as before.	Looking at pictures where they can use subitising and asking how many altogether?	Using a number line to count on often we do this when calculating the class Team Points e.g. Green Team have 6 points and now 2 more need to be added. How many do they have now?

		Use representations for base 10									
Use known number facts Part, Part whole	Children explore ways of making numbers within 20		$\begin{array}{ll} \square+1=16 & 16-1=\square \\ 1+\square=16 & 16-\square=1 \end{array}$ If $3+6=9$, then we also know that: $\begin{aligned} & +\ldots=9 \\ & -3=-6 \\ & -6={ }^{+}{ }^{+}-6- \end{aligned}$ "When we have a total and take away a part, then we are left with the other part".								
Using known facts		$\begin{aligned} \because+\therefore & =\therefore \\ \\|\\|+\\|\\| & =\\| \\|\\| \\| \end{aligned}$	$6+3=9$ $6+13=19$ $3+4=7$ If $4+5=9$ Then $14+5=19$ leads to $30+40=70$ leads to $300+400=700$								
Bar Model	$3+4=7$	$7+3=10$	23 25 $?$								

Adding three single digits	$4+7+6=17$ Use base 10 and place value counters to exchange ten ones for a ten. Put 4 and 6 together to make 10 . Add on 7. Following on from making 10, make 10 with 2 of the digits (if possible) then add on the third digit.	Add together three groups of objects. Draw a picture to recombine the groups to make 10.	$\begin{aligned} \frac{4+7+6}{10} & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make 10 and then add on the remainder.
Add a 2digit number and ones	$17+5=22$ Explore patterns $\begin{aligned} & 17+5=22 \\ & 27+5=32 \end{aligned}$	Use part part whole and number line to model. $17+5=22$	$17+5=22$ Explore related facts$\begin{aligned} & 17+5=22 \\ & 5+17=22 \\ & 22-17=5 \\ & 22-5=17 \end{aligned}$22 17 5

Add a 2digit number and tens	$25+10=35$ Explore that the ones digit does not change		$\begin{aligned} & 27+10=37 \\ & 27+20=47 \\ & 27+\square=57 \end{aligned}$
Add two 2digit numbers	APA A A Model using dienes, straws, place value counters and numicon	Use number line and bridge ten using part whole if necessary.	$\begin{gathered} 25+47 \\ 20+540+7 \\ 20+40=60 \\ 5+7=12 \\ 60+12=72 \end{gathered}$

Year 3 Addition			
Addition using exchanging	Children continue to use the Base 10 equipment to support their calculations, including exchanging 10 units/ones for 1 ten when the total of the units/ones is 10 or more. They will record their own drawings of the Base 10 equipment, using lines for 10 rods and dots for the unit blocks. $34+23=?$ The units/ones are added first $4+3=7$ The tens are added next $30+20=50$ Both answers are put together $50+7=57$ $28+36=?$ The units/ones are added first $8+6=14$ with ten units/ones exchanged for 1 ten. A ring is put around the units/ones not exchanged - this is the units part of the answer. The tens are then added, including the exchanged ten, to complete the sum.	Children can draw the rods and dots or place value counters to represent the calculation. With exchange. e.g. $28+36=$	$28+36=$
Add two or three 2- or 3-digit numbers	Add together the ones first then add the tens. Use the Base 10 blocks first before moving onto place value counters.	1 0 $\bigcirc \bigcirc$ 0	Calculations $\begin{array}{r} 21+42= \\ 21 \\ +\underline{42} \end{array}$

			2 2 3 +1 1 4 3 3 7
Column methodregrouping	Make both numbers on a place value grid. Add up the units and exchange 10 ones for one 10. Add up the rest of the columns, exchanging the 10 counters from one column for the next place value column until every column has been added.	Children can draw a pictorial representation of the columns and place value counters to further support their learning and understanding. Children could also draw base 10 rods and dots.	Start by partitioning the numbers before moving on to clearly show the exchange below the addition. $\begin{aligned} & 20+5 \\ & \frac{40+8}{60+13}=73 \end{aligned}$

	This can also be done with Base 10 to help children clearly see that 10 ones equal 1 ten and 10 tens equal 100. As children move on to decimals, money and decimal place value counters can be used to support learning.		$\begin{array}{r} 321 \\ +\quad 7 \\ +\quad 48 \\ \hline 376 \\ \hline 1 \end{array}$
Year 4 Addition			
Add numbers up to 4 digits and decimals with one decimal place	Children will move to year 4 using whichever method they were using as they transitioned from year 3 .	\bullet $\ddots 8$ \because \ddots $\because \because$ \because \bullet \because \ddots \ddots 7 1 5 1 \bullet \bullet Draw representations	

	Hundreds	Tens	Ones			
		010000				
Year 5 Addition						
Add numbers with more than 4 digits Add decimals with 2 decimal places, including money	Introduce decimal place value counters and model exchange for addition			$2.37+81.79$ tens 00000 000$\| 00$	tents hundredts 000 00009 0 00 00000 00060 00 0000 6	$\begin{gathered} E 23 \cdot \\ t \ldots 7 \cdot \\ \hline E 35 \\ \hline E 3 \end{gathered}$ $\begin{array}{r} 3364 \\ +\quad 247 \\ \hline 3611 \\ \hline 11 \end{array}$ $\begin{array}{r} 3121 \\ +\quad 147 \\ \hline 3306 \\ \hline 11 \end{array}$
Year 6 Addition						
add several numbers of increasing complexity Including adding money, measure and decimals with different numbers of decimal points	As year 5 Decimal counters are demarcated with their value.			As year 5		Insert zeros for place holders. They will also be adding: - several numbers with different numbers of digits, understanding the place value; - decimals with up to two decimal places (with mixed numbers of decimal places), knowing that the decimal points line up under one another. - amounts of money and measures, including those where they have to initially convert from one unit to another.

